Содержание
- 1 Теплопроводность полипропилена
- 2 Какова разница во внешней теплоотдаче металлических и пластиковых труб?
- 3 Теплопроводность пластиков и пластмасс, плотность пластмассы — физические свойства полимеров
- 4 ПОЛИПРОПИЛЕН ПП (PP) – СВОЙСТВА И ХИМИЧЕСКАЯ УСТОЙЧИВОСТЬ
- 5 Описание и марки полимеров – Полипропилен
Теплопроводность полипропилена
по поводу остывания воды в трубах.
Теплопроводность полипропиленовых труб.
Смотрим определение:
Теплопрово́дность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.
Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за час при разности температур на двух противоположных поверхностях в 1 К.
ГОСТ 26996 – 86 Полипропилен
Технические условия
Polypropylene and copolymers of propylene.
Настоящий стандарт распространяется на полипропилен, получаемый полимеризацией пропилена, и сополимеры, получаемые сополимеризацией пропилена и этилена в присутствии металлорганических катализаторов при низком и среднем давлениях. Полипропилен и сополимеры пропилена предназначены для изготовления пленки, волокна, труб, технических изделий и изделий народного потребления. Показатели, установленные настоящим стандартом, предусмотрены для высшей и первой категории качества. Полипропилен и сополимера пропилена изготавливают для нужд народного хозяйства и поставки на экспорт. Стандарт не распространяется на полипропилен для конденсаторной пленки.
Свойства полипропилена
Проблемы с горячей водой могут иметь две причины (или два проявления):
1.Из-за тупиковой системы ГВС горячая вода на верхних этажах начинает идти не сразу.
2.По вине поставщика тепла (тепловых сетей) горячая вода не является таковой уже на вводе в дом.
Первую проблему можно решить, реконструировав систему тепловодоснабжения дома, организовав циркуляцию ГВС. Т.е., горячая вода постоянно «крутится» по трубам, и мы, открывая кран, получаем ее сразу горячую. Но мне кажется, что затраты на такую реконструкцию заставят жильцов задуматься: а может, ну его — будем лучше сливать теплую воду и платить за нее по «горячему» счетчику? ,)
Вторая проблема решается путем предъявления поставщику распечаток показаний общедомового теплосчетчика, фиксирующего температуру горячей воды на вводе. Разумеется, в договоре теплоснабжения качество горячей воды должно быть оговорено, и должен быть установлен порядок расчетов за «негорячую горячую воду» и обязанности поставщика по устранению «косяков» с температурой ГВС.
Теплопроводность полипропилена
Теплопроводность полипропилена по поводу остывания воды в трубах. Теплопроводность полипропиленовых труб. Смотрим определение: Теплопрово́дность — это перенос теплоты структурными
Источник: www.xn--80aaf5awfh7a.xn--p1ai
Какова разница во внешней теплоотдаче металлических и пластиковых труб?
Для подогрева оборудования проложили пластиковые трубы, но эффект оказался слишком слабым от ожидаемого. Вот и возник вопрос в разнице теплоотдачи. А то есть вероятность полной замены подогрева. Возможно кто то с этим сталкивался?
Количество передаваемого через любую стенку (в данном случае через стенку трубы) тепла (Q) определяется по формуле Q=K*F*(t1-t2), где: K – коэффициент теплопередачи, F площадь теплообмена, (t1-t2) – разность температур по разные стороны стенки.
В свою очередь, коэффициент теплопередачи K определяется по формуле:
K=1/(1/a1+1/а2+”дельта”/”лямбда”), где a1 – коэффициент теплоотдачи от теплоносителя внутри трубы к стенке, а2 – коэффициент теплоотдачи от стенки к теплоносителю (воздуху) снаружи трубы, “дельта” – толщина стенки трубы, “лямбда” – коэффициент теплопроводности материала трубы. Величины а1 и а2 рассчитываются по весьма сложным методикам, но в данной ситуации они нам не нужны. Нас интересует как раз “дельта”/”лямбда”. Как видно из формулы, скорость передачи тепла через стенку трубы, тем больше, чем меньше толщина стенки и чем больше коэффициент теплопроводности материала трубы.
Ну, с толщиной стенки трубы всё ясно, а вот коэффициенты теплопроводности различных материалов различаются в сотни и тысячи раз
Например, (по разным источникам, и возможно для различных сплавов и марок),у меди он равен 380-407 Вт/(м*К) у алюминия 221-230 Вт/(м*К), у стали 52-58 Вт/(м*К), а у полиэтилена всего 0,30 Вт/(м*К). У других пластиков примерно того же порядка. Таким образом, у меди он в 1000 раз больше, чем у пластиков, и даже у стали примерно в 200 раз больше. Конечно медь слишком дорогая и тяжёлая, поэтому для теплообменных устройств применяют в основном сталь, иногда алюминий.
Интересно какому . у пришло в голову для подогрева проложить пластиковые трубы? Пластиковые трубы можно применить только для подвода теплоносителя к месту обогрева (для снижения потерь), а для теплоотдачи необходимо применять МЕТАЛЛИЧЕСКИЕ трубы (или иные обогревающие устройства – “радиаторы”, “батареи”, “калориферы” и т.п.).
Какова разница во внешней теплоотдаче металлических и пластиковых труб?
Количество передаваемого через любую стенку (в данном случае через стенку трубы) тепла (Q) определяется по формуле Q=K*F*(t1-t2), где: K – коэффициент теплопередачи, F площадь теплообмена, (t1-t2) –
Источник: www.bolshoyvopros.ru
Теплопроводность пластиков и пластмасс, плотность пластмассы — физические свойства полимеров
Свойства полимеров: теплопроводность и плотность пластиков и пластмасс
В таблице представлены физические свойства полимеров (пластмасс и пластика) при отрицательной и положительной температуре, в интервале от -200 до 280°С. Свойства пластиков даны при нормальном атмосферном давлении.
Таблица свойств следующих полимеров, пластиков и пластмасс: акриловая смола, асбоволокниты типа КФ-3, асботекстолиты, асборезит, волокниты, гетинаксы, гетинакс тонкий, древеснослоистые пластики ДСП, карболит: крезольный, литой, фенольный, каучук, силиконовый, с наполнителем, кремнийорганический полимер КМ-9, кремнийорганическая смола К-55, К-18-2, К-21-22. Лак: алкидный на высыхающих маслах ФВ-2, пентафталевый №170, кремнийорганический КО-08, полиэфирный ПЭ-939, лак битумный №177, мипора, пенопласты, поропласты, полиамидная смола 54, полиамид 66 (полиамид 6, капрон, полиамид 66, нейлон, найлон), полиамид 68, поликапроамид, полиизобутен, поливинилбутираль, поливиниловый спирт, полиизобутилен, полиизопропилметакрилат, поликарбонат, полипропилен атактический, изоатактический, полиметилметакрилат, полиорганосилоксановые жидкости: ПМС — 1,5, ПМС — 5, 10, 50, 100, 200, 400, 476, 700, 1000, ПЭС — 1, 2, 3, 4, 5, ПФМС — 2/5 Л, 4, ФМ — 1322, ПФМС — 6, полистирол ударопрочный УПП — 1 ППС, политетрафторэтилен, полихлортрифторэтилен, полиуретан ПУ — 1, ПВХ пленка, кабельный, пластифицированный, жесткий, с кварцевым наполнителем, линолеум с наполнителем, хлорированный, полихлорвинил с бутилбензилфталатом, палатиновое масло АН, полиэтилен ВД, П2020, ПЭ — 500, линейный, НД, П4045К, полиэтилентерефталат, полиэтиленгликоль, полиэтиленсилоксановая жидкость №5, 7, резит, резина пористая, стеклопластик полиэфирный на основе жесткого и мягкого стеклохолста, стекловолокнит типа АГ — 4, КАСТ, стеклопластик полиэфирный на основе стеклоткани, наполненной минеральным наполнителем 8% ZnO в смоле ПН-1, текстолит, фибролит, фенолформальдегидная смола, аррезин — Б, 101К, Р-21, совмещенный фенолит, фенольная литая смола, фурфурил — фенолформальдегидная смола Ф-10, фурановый полимер ФГ-2, эмаль (кремнийорганическая): КО-84, КО-811, эпоксидная смола Э-33, Э-41, ЭД-5, ТФЭ-9, ПН-1, этрол ацетатцеллюлозный, этилцеллюлозный.
Даны следующие теплофизические свойства полимеров и пластмасс:
- плотность пластика, кг/м 3 ,
- коэффициент теплопроводности, Вт/(м·град),
- коэффициент температуропроводности, м 2 /с,
- удельная (массовая) теплоемкость, кДж/(кг·град).
Следует особо отметить значения плотности пластмассы в таблице. Ее диапазон находится в пределах от 16 кг/м 3 (для теплоизоляционных пенистых пластмасс — таких, как мипора) до 2280 кг/м 3 (для тяжелого линолеума с наполнителем).
Теплопроводность в одноосно-растянутых полимерах
В таблице представлены значения степени растяжения, коэффициента линейного растяжения и теплопроводности при комнатной температуре
(вдоль и поперек направления растяжения) для следующих полимеров, пластмасс и пластиков: полистирол, полиметилметакрилат, поливинилхлорид, поликарбонат.
Теплоемкость пластмасс, пластика и резины
В таблице представлены значения удельной (массовой) теплоемкости в кДж/(кг·град) при различной температуре (от 5 до 333К) для следующих полимеров пластика и резины: бакелит, винипласт, капрон, найлон-6 (полиамид 6, капрон, полиамид 66, нейлон), парафин, парафин жидкий, поликарбонат, полиметилакрилат (плексиглас, оргстекло), полистирол, политетрафторэтилен, полиэтилен, полиэфирные пластмассы, пресс-материал АГ-4С, резина, эбонит, этролы целлюлозные.
Свойства пористых полимеров
В таблице представлены теплофизические и механические свойства полимеров, имеющих в своей структуре газонаполненные поры.
Свойства полимеров в таблице указаны при температуре 5…50°С.
Даны следующие свойства пористых полимеров и пластмасс:
- плотность пластиков (объемная масса), кг/м 3 ,
- предел прочности при сжатии, Мн/м 2 ,
- водопоглощение в течении суток, %,
- линейная усадка при 90°С, %,
- горючесть,
- теплопроводность пластиков, Вт/(м·град),
- ударная вязкость, кДж/м 2 ,
- теплостойкость (предельная температура применения),°С,
- структура материала.
В таблице приведены плотность свойства следующих полимеров с пористой структурой: поливинилхлоридные ПВХ жесткие, эластичные, пенополистирол (пенопласт ПС-1, ПС-4), пенофенопласты (ФФ, ФК), пенополиуретаны жесткие, пеноэпоксипласты. Следует отметить, что плотность пластиков зависит от их пористости и может находится в диапазоне от 30 до 230 кг/м 3 .
Свойства гетероцепных полимеров
В таблице приведены свойства гетероцепных полимеров при комнатной температуре.
К гетероцепным полимерам относятся следующие пластики: лавсан, капрон, эпоксидные полимеры, капрон, энант, анид, поликарбонаты и другие вещества.
Указаны следующие свойства полимеров:
- плотность пластика, кг/м 3 ,
- предел прочности при изгибе, растяжении и сжатии, Мн/м 2 ,
- ударная вязкость, кДж/м 2 ,
- относительное удлинение, %,
- модуль упругости, Гн/м 2 ,
- коэффициент температурного расширения (КТР), 1/град,
- диэлектрическая проницаемость при 50 Гц,
- удельное электросопротивление (объемное), Ом·м,
- электрическая прочность, Мв/м,
- тангенс угла диэлектрических потерь при 50 Гц.
Дана плотность и свойства таких гетероцепных полимеров, как капрон, анид, полиформальдегид, поликарбонаты, лавсан, энант, полиурентаны, эпоксидные полимеры с различной плотностью. Плотность пластмасс в таблице изменяется в интервале от 1080 до 1420 кг/м 3 .
- Новиченок Н. Л., Шульман З. П. Теплофизические свойства полимеров. Минск, «Наука и техника» 1971. — 120 с.
- Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др., Под ред. И. С. Григорьева, Е. З. Мейлихова — М.: Энергоатомиздат, 1991. — 1232 с.
- Писаренко В. В. Справочник лаборанта-химика. Справ. пособие для проф.-техн. учебн. заведений. М., «Высшая школа», 1970. — 192 стр. с илл.
Теплопроводность пластиков и пластмасс, плотность пластмассы – физические свойства полимеров
Подробная таблица свойств пластика и пластмасс: плотность пластика, теплопроводность, теплоемкость и другие теплофизические свойства пластмасс, а также пористых
Источник: thermalinfo.ru
ПОЛИПРОПИЛЕН ПП (PP) – СВОЙСТВА И ХИМИЧЕСКАЯ УСТОЙЧИВОСТЬ
- Полиэтилен (РЕ)
- Поливинилхлорид (PVC)
- Поливинилденфторид (PVDF)
- Этилен-трифторхлорэтилен (E-CTFE)
Полипропилен (РР) получают полимеризацией газа пропилена с применением катализаторов. Получившийся материал, благодаря своим физико-химическим свойствам, нашел широчайшее применение в различных отраслях промышленности, в том числе на нашем предприятии при производстве емкостей и резервуаров.
ФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИПРОПИЛЕНА
Полипропилен обладает высокой ударной вязкостью и повышенной износостойкостью, стоек к многократным изгибам (при холодной гибки ограничен радиус изгиба), физиологически безвреден и годен к контакту с питьевой водой и пищевыми продуктами, водонепроницаем, обладает коррозионной стойкостью, низкой теплопроводностью, точка плавления 160˚С. Полипропилен не обладает запахом, не тонет в воде, в огне горит без дыма, запах при горении острый и сладковатый, плавится каплями.
По способу полимеризации полипропилен делится на гомополимер, получаемый полимеризацией одинаковых мономеров, и сополимер, получаемый полимеризацией разных мономеров. Гомополимеры (PP-H) обладают высокой твердостью, жесткостью и прочностью на растяжение, но при температуре близкой к нулю становятся хрупкими. В состав сополимеров (PP-В/PP-C) входит полиэтилен, поэтому сополимеры обладают высокой пластичностью и могут использоваться при температуре до -20˚С, но по сравнению с гомополимером менее устойчивы к высоким температурам.
На нашем предприятии для изготовления резервуаров применяется листовой полипропилен, в форме плит различной толщины, производства ведущих европейских производителей. Изготовление полипропиленовых плит производится методом экструзии, при котором расплавленная полипропиленовая масса на экструзионных линиях проходит через формообразующее устройство, геометрические размеры которого задают размеры полипропиленовому листу. При изготовлении резервуаров соединение полипропиленовых листов производится на специальных станках контактной стыковой сварки. Отдельные элементы соединяются экструзионной сваркой.
Физические свойства плит полипропилена на примере гомополимера PP-DWU AlphaPlus и блок-сополимера PP-В немецкого производителя Simona AG представлены в таблице:
Плотность, г/см 3
Напряжение при растяжении,МПа
Температурный диапазон применения, ˚С
Удлинение при разрыве, %
Модуль упругости при растяжении, МПа
Ударная вязкость, кДж/м 2
ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИПРОПИЛЕНА PP (ПП)
Полипропилен благодаря своей неполярной структуре обладает высокой химической устойчивостью к контакту с органическими и неорганическими кислотами, кроме высококонцентрированных сильных окислителей (HNO3, h3SO4), щелочами, растворами солей, минеральными и растительными маслами, спиртосодержащими продуктами. Полипропилен инертен при контакте с углеводородами, но при длительном контакте с их парами, особенно при температурах свыше 30˚С, происходит набухание. Полипропилен подвержен деструкции при контакте с галогенами, окисляющими газами и солями.
Полипропилен обладая высокой химической устойчивостью и прочностью, является универсальным материалом при изготовлении гальванических ванн.
При высоких температурах устойчивость полипропилена к химическим веществам может существенно изменяться. Поэтому очень важно при конструировании учитывать температурный диапазон эксплуатации изделий из полипропилена, контактирующих с химическими растворами.
На полипропилен незначительное влияние оказывает ионизирующее облучение, поэтому материал широко используется в медицине.
Приведенная таблица химической стойкости является весьма условной. Для расчета устойчивости полипропилена к химическим растворам и подбора материала при заданных температурах и условиях эксплуатации обращайтесь к нашим специалистам.
По пожаробезопасности полипропилен, применяющийся в резервуаростроении, отнесен, согласно стандарту DIN 4102, к классу В1 – трудно возгораемые. Температура самовоспламенения полипропилена около 350˚С. Горение полипропилена происходит с выделением углекислого и угарного газа, воды и незначительного количества сажи. Тушение полипропилена может производится водой.
На практике при изготовлении резервуаров применение полипропилена ограничивается его свойствами. Для адаптации свойств материала к определенным условиям в полипропилен добавляют специальные присадки. Например, сам по себе полипропилен практически не электропроводен, но в ряде случаев, например при изготовлении резервуаров для хранения взрывоопасных сред, необходимо чтобы материал при образовании электростатического заряда отводил его. Для увеличения электропроводности в материал добавляют токопроводящие вещества. Поэтому для изготовления резервуаров для хранения взрывоопасных растворов мы применяем электропроводящий полипропилен.
При эксплуатации изделий из полипропилена, под воздействием различных климатических факторов (свет, влага) происходит разрушение материала, которое называется старением. Процессы старения приводят к изменению механических свойств – потере эластичности и снижению механической прочности полипропилена, ухудшению диэлектрических показателей. Для защиты от старения в полипропилен добавляют малые дозы низкомолекулярных добавок – стабилизаторы. Для защиты полипропилена от светового старения применяются светостабилизаторы (ультрафиолетовые стабилизаторы). Действие светостабилизаторов заключается в фильтрации ультрафиолетового излучения и его преобразования в тепловую энергию. Защиту от термоокислительного старения обеспечивают стабилизаторы, называемые антиоксидантами.
Теплопроводность полипропилена
Физико-химические свойства полипропилена различных марок: блоксополимер PP-B/C, гомополимерPP-H
Источник: www.vkpolymer.ru
Станьте первым!